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1. Introduction
In 1949, Cahit Arf explored the multiplicity sequences of curve
singularities.

In 1971, J. Lipman defined “Arf rings” for one-dimensional CM
semi-local rings.

Definition 1.1 (Lipman)

Let R be a CM semi-local ring with dimR = 1. Then R is called an
Arf ring, if the following hold:

(1) Every integrally closed open ideal I has a principal reduction.

(2) If x , y , z ∈ R s.t.

x is a NZD on R and
y

x
,
z

x
∈ R ,

then yz/x ∈ R .
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Notice that

(1) I n+1 = aI n for ∃ n ≥ 0 and ∃ a ∈ I .

(2) Stability of I (if reduction exists).

Hence

Theorem 1.2 (Lipman)

Let R be a CM semi-local ring with dimR = 1. Then

R is Arf ⇐⇒ Every integrally closed open ideal is stable.

When R is a CM local ring with dimR = 1,

if R is an Arf ring, then R has minimal multiplicity.
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We assume

(R ,m) is a Noetherian complete local domain with dimR = 1

R/m is an algebraically closed field of characteristic 0

Lipman proved:

R is saturated =⇒ R has minimal multiplicity.

Moreover, among all Arf rings between R and R ,

∃ the smallest one Arf(R), called Arf closure.

Lipman extends the results of C. Arf about multiplicity sequences.
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Question 1.3

What happens if we remove the condition (1)?

Definition 1.4

A commutative ring R is said to be weakly Arf, provided

yz/x ∈ R , whenever x , y , z ∈ R s.t. x ∈ R is a NZD, y/x , z/x ∈ R .

Example 1.5

R = R

e(R) ≤ 2, where R is a Noetherian local ring.

k[H], where H is an Arf semigroup

k[tn, tn+1, . . . , t2n−1] (n ≥ 2)
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2. Weakly Arf rings

Throughout this talk

R a Noetherian ring

W (R) the set of NZDs on R

Λ(R) = {(x) | x ∈ W (R)}

Theorem 2.1

R is a weakly Arf ring ⇐⇒ Every I ∈ Λ(R) is stable.
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Recall Λ(R) = {(x) | x ∈ W (R)}.

Example 2.2

Let k be a field and set R = k[[X ,Y ]]/(XY (X + Y )). Then

R is a CM local reduced ring with dimR = 1.

m does not have a principal reduction, if k = Z/(2).

{integrally closed m-primary ideals} = {m} ∪ {stable ideals} .

Hence, if k = Z/(2), then R is a weakly Arf ring, but not an Arf ring.
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Proposition 2.3

Let φ : R → S be a homomorphism of rings. Suppose aS ∩ R = aR
and φ(a) ∈ W (S) for ∀a ∈ W (R). If S is weakly Arf, then so is R.

Corollary 2.4

(1) Let S be an integral domain, R ⊆ S a subring of S s.t. R is a
direct summand of S. If S is a weakly Arf ring, then so is R.

(2) If S = R[X1,X2, . . . ,Xn] (n > 0) is weakly Arf, then so is R.

(3) Let φ : R → S be the faithfully flat homomorphism of rings. If
S is a weakly Arf ring, then so is R.
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Proposition 2.5

Let (R ,m) be a Noetherian local ring with dimR = 1. Then R is a

weakly Arf ring if and only if so is R̂.

Let A = C[[t4, t5, t6, s]] ⊆ C[[t, s]]. Choose a UFD R s.t. A ∼= R̂ .

Then R is a weakly Arf ring. If R̂ is weakly Arf, then

B = C[[t4, t5, t6]] → A ∼= R̂

ensures that B is weakly Arf, whence B is Arf. This is impossible.

Hence R̂ is not weakly Arf.
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Theorem 2.6

Suppose that

R is an integral domain,

R satisfies (S2), and

R contains an infinite field.

Then R is weakly Arf if and only if so is R[X1,X2, . . . ,Xn] for ∀n ≥ 1.

Let R = k[Y ]/(Y n) (n ≥ 1) and S = R[X ]. Then R is weakly Arf
and

S is a weakly Arf ring ⇐⇒ n ≤ 2.
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Theorem 2.7

Let R be a Noetherian ring, M a finitely generated torsion-free
R-module. Then TFAE.

(1) R ⋉M is a weakly Arf ring.

(2) R is a weakly Arf ring and M is an R-module.

Theorem 2.8

Let (R ,m), (S , n) be Noetherian local rings with k = R/m = S/n.
Suppose that depthR > 0 and depth S > 0. Then TFAE.

(1) R ×k S is a weakly Arf ring.

(2) R and S are weakly Arf rings.
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3. Strict closures

We define

R ⊆ R∗ =
{
x ∈ R | x ⊗ 1 = 1⊗ x in R ⊗R R

}
⊆ R

and we say that R is strictly closed, if R = R∗ holds.

Note that

R is strictly closed =⇒ R is weakly Arf.

Indeed, let x , y , z ∈ R with x ∈ W (R) such that y/x , z/x ∈ R . Then

yz

x
⊗ 1 =

y

x
⊗
(
x · z

x

)
=

(y
x
· x

)
⊗ z

x
= 1⊗ yz

x
.
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Example 3.1

Every Stanley-Reisner algebra is strictly closed.

Every F -pure Noetherian ring with (S2) is strictly closed.

Theorem 3.2 (Zariski, Lipman)

Let R be a CM semi-local ring with dimR = 1. Then

(1) R is strictly closed =⇒ R is Arf.

(2) The converse holds if R contains a field.
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Theorem 3.3

Let R be a CM semi-local ring with dimR = 1. Then

R is strictly closed ⇐⇒ R is Arf.

Theorem 3.4

Let R be a Noetherian ring with (S2). Then TFAE.

(1) R is strictly closed.

(2) R is weakly Arf, and RP is Arf for ∀P ∈ SpecR with htR P = 1.

Corollary 3.5

Let (R ,m) be a Noetherian local ring with dimR ≥ 2 and (S2). Then

R is strictly closed ⇐⇒ R is weakly Arf.
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Conjecture 3.6 (Zariski)

Let R be a CM semi-local ring with dimR = 1. Suppose that R is a
finitely generated R-module. Then the equality

Arf(R) = R∗

holds.

Zariski’s conjecture holds if R contains a field (Lipman).

Theorem 3.7

Zariski’s conjecture holds.
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Theorem 3.8

Let R be a CM semi-local ring with dimR = 1. Then

R is Arf =⇒ RG is Arf

for every finite subgroup G of AutR s.t. the order of G is invertible.
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Thank you for your attention.
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